Get the tidy variance summary from a fitted OLS maars_lm, lm class object

get_summary(
  mod_fit,
  sand = NULL,
  boot_emp = NULL,
  boot_sub = NULL,
  boot_mul = NULL,
  boot_res = NULL,
  well_specified = NULL
)

Arguments

mod_fit

(maars_lm, lm) A fitted OLS maars_lm, lm class object

sand

(logical) : TRUE if sandwich estimator output is required, FALSE to exclude this output from the request

boot_emp

(logical) : TRUE if empirical bootstrap standard error output is required, FALSE to exclude this output from the request

boot_sub

(logical) : TRUE if subsampling standard error output is required, FALSE to exclude this output from the request

boot_mul

(logical) : TRUE if multiplier bootstrap standard error output is required, FALSE to exclude this output from the request

boot_res

(logical) : TRUE if residual bootstrap standard error output is required, FALSE to exclude this output from the request

well_specified

(logical) : TRUE if lm standard errors (well specified) output is required, FALSE to exclude this output from the request

Value

(tibble) : Combined standard error summary from a fitted OLS maars_lm, lm class object

Examples

if (FALSE) { set.seed(1243434) # generate data n <- 1e3 X_1 <- stats::rnorm(n, 0, 1) X_2 <- stats::rnorm(n, 10, 20) eps <- stats::rnorm(n, 0, 1) # OLS data and model y <- 2 + X_1 * 1 + X_2 * 5 + eps lm_fit <- stats::lm(y ~ X_1 + X_2) # Empirical Bootstrap check set.seed(454354534) mms_var <- comp_var( mod_fit = lm_fit, boot_emp = list(B = 20, m = 200), boot_res = list(B = 30) ) get_summary(mms_var) # compute variance with multiplier bootstrap now mms_var2 <- comp_var( mod_fit = lm_fit, boot_mul = list(B = 100) ) get_summary(mms_var2) }