maars_lm, lm
class objectR/ols-summary.R
get_summary.Rd
Get the tidy variance summary from a fitted OLS maars_lm, lm
class object
get_summary( mod_fit, sand = NULL, boot_emp = NULL, boot_sub = NULL, boot_mul = NULL, boot_res = NULL, well_specified = NULL )
mod_fit | ( |
---|---|
sand | (logical) : |
boot_emp | (logical) : |
boot_sub | (logical) : |
boot_mul | (logical) : |
boot_res | (logical) : |
well_specified | (logical) : |
(tibble) : Combined standard error summary from a fitted
OLS maars_lm, lm
class object
if (FALSE) { set.seed(1243434) # generate data n <- 1e3 X_1 <- stats::rnorm(n, 0, 1) X_2 <- stats::rnorm(n, 10, 20) eps <- stats::rnorm(n, 0, 1) # OLS data and model y <- 2 + X_1 * 1 + X_2 * 5 + eps lm_fit <- stats::lm(y ~ X_1 + X_2) # Empirical Bootstrap check set.seed(454354534) mms_var <- comp_var( mod_fit = lm_fit, boot_emp = list(B = 20, m = 200), boot_res = list(B = 30) ) get_summary(mms_var) # compute variance with multiplier bootstrap now mms_var2 <- comp_var( mod_fit = lm_fit, boot_mul = list(B = 100) ) get_summary(mms_var2) }