maars_lm, lm
class objectR/ols-summary.R
get_assumptions.Rd
Retrieve the assumptions for the variance estimators to be consistent for a
a fitted OLS maars_lm, lm
class object.
get_assumptions( mod_fit, sand = NULL, boot_emp = NULL, boot_sub = NULL, boot_mul = NULL, boot_res = NULL, well_specified = NULL )
mod_fit | (maars_lm, lm) A fitted OLS |
---|---|
sand | (logical) : |
boot_emp | (logical) : |
boot_sub | (logical) : |
boot_mul | (logical) : |
boot_res | (logical) : |
well_specified | (logical) : |
(vector) : Vectors containing the assumptions under which each estimator of the variance is consistent.
if (FALSE) { set.seed(1243434) # generate data n <- 1e3 X_1 <- stats::rnorm(n, 0, 1) X_2 <- stats::rnorm(n, 10, 20) eps <- stats::rnorm(n, 0, 1) # OLS data and model y <- 2 + X_1 * 1 + X_2 * 5 + eps lm_fit <- stats::lm(y ~ X_1 + X_2) # DEFINE common column names - these stay the same across all # reported error types common_vars <- c("term", "estimate") # Empirical Bootstrap check set.seed(454354534) comp_var1 <- comp_var( mod_fit = lm_fit, boot_emp = list(B = 20, m = 200), boot_res = list(B = 30) ) # This returns everything but boot_mul, since we didn't run it in the original # original maars_lm model get_assumptions( mod_fit = comp_var1) }