Retrieve the assumptions for the variance estimators to be consistent for a a fitted OLS maars_lm, lm class object.

get_assumptions(
  mod_fit,
  sand = NULL,
  boot_emp = NULL,
  boot_sub = NULL,
  boot_mul = NULL,
  boot_res = NULL,
  well_specified = NULL
)

Arguments

mod_fit

(maars_lm, lm) A fitted OLS maars_lm, lm class object

sand

(logical) : TRUE if sandwich estimator output is required, FALSE to exclude this output from the request

boot_emp

(logical) : TRUE if empirical bootstrap standard error output is required, FALSE to exclude this output from the request

boot_sub

(logical) : TRUE if subsampling standard error output is required, FALSE to exclude this output from the request

boot_mul

(logical) : TRUE if multiplier bootstrap standard error output is required, FALSE to exclude this output from the request

boot_res

(logical) : TRUE if residual bootstrap standard error output is required, FALSE to exclude this output from the request

well_specified

(logical) : TRUE if lm standard errors (well specified) output is required, FALSE to exclude this output from the request

Value

(vector) : Vectors containing the assumptions under which each estimator of the variance is consistent.

Examples

if (FALSE) { set.seed(1243434) # generate data n <- 1e3 X_1 <- stats::rnorm(n, 0, 1) X_2 <- stats::rnorm(n, 10, 20) eps <- stats::rnorm(n, 0, 1) # OLS data and model y <- 2 + X_1 * 1 + X_2 * 5 + eps lm_fit <- stats::lm(y ~ X_1 + X_2) # DEFINE common column names - these stay the same across all # reported error types common_vars <- c("term", "estimate") # Empirical Bootstrap check set.seed(454354534) comp_var1 <- comp_var( mod_fit = lm_fit, boot_emp = list(B = 20, m = 200), boot_res = list(B = 30) ) # This returns everything but boot_mul, since we didn't run it in the original # original maars_lm model get_assumptions( mod_fit = comp_var1) }